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H E A T  A N A L O G Y  I N  L A N G M U I R  P R O B E  T H E O R Y  

A. V. Kashevarov UDC 533.9.082.76:536.242 

Mathematical equivalence of the problems of determining the Langmuir probe saturation current and the 

Nusselt number is shown in the heat transfer of a body of the same shape. Numerical results of the solution 

to these two problems obtained in various works are compared for a cylinder. 

To determine the concentration of charged particles in a dense plasma from the volt-ampere characteristic 

of a probe, use is usually made of the ion saturation current. This is some limiting current at the probe with the 

ratio of the Debye screening distance to the probe radius a -- ;tD/R -~ 0 and a sufficiently high negative potential 
when the probe current is due to positive ions alone. 

To theoretically determine the saturation current, we need to solve one equation in partial derivatives, in 

place of a system of nonlinear elliptic equations that describe the total probe characteristic [ 1 ]. In the case of a 

weakly ionized incompressible isothermal plasma made up of positive monovalent ions and electrons and frozen 

chemical reactions in a plasma flow, it is the convective mass transfer equation. We write it in a dimensionless form 

I R e  Sc (urn) - An = 0 ,  (1) 

where Sc = v /D  i is the Schmidt number. The factor 1/2 is due to the fact that the diffusion of the charged particles 
at the probe is ambipolar. 

In the case of a cylindrical probe crossing the incoming flow and a spherical probe, the boundary conditions 
for Eq. (1) are 

n [r=l = 0 ,  n [ r - , oo - "  1 , 

The dimensionless density of the saturation current ] is given by the expression [1 ]: 

Y = 2  -~r r= 1 

The local Nusselt number determined from the diameter of the cylindrical or spherical body 

N U D = 2  O~-rTIr=l' 

in the problem of convective heat transfer for an incompressible viscous liquid with constant physical characteristics 

is found, as is well known, from the solution to the equation 

Re Pr (uVT) - AT = 0 ,  

where T is the dimensionless temperature with the boundary conditions 

T Ir=l = 0 ,  T Ir_,o, --, 1. 
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Fig. 1. Dimensionless saturation current onto a cylindrical probe vs electrical 

Reynolds number. Curves 1-3 are the results of [5]: 1) Sc--0.5; 2) 1; 3) 1.5; 

4 and 5) recalculated results of [6 ]; 4) Pr = 0.73; 5) 1; 6) recalculated result 

of [9 ]. 

As we can see, the indicated two problems become totally identical when the condition 

Sc = 2 Pr .  (2) 

is satisfied. 

Between the Reynolds electric number Ree = ReSc and the Peclet number Pe -- RePr there is the relationship 

Re e = 2 Pe .  (3) 

The considered heat analogy has been known in Langmuir probe theory and even earlier. Apparently, the first 

mention of it was made in [2 ]. In [3 ], heat analogy was used to determine the saturation current density in the 

critical point of a cylindrical probe. However, this analogy failed to find proper reflection in the literature. 

Thus, it is only the limiting cases of convection, i.e., its weak Ree << 1 and strong Ree >> 1 influence, that 

were considered in the known work [4 ] for a probe in the regime of continuum. The case of moderate influence of 

convection in which Ree --- 0 (1) is numerically investigated in [5] for cylindrical and spherical probes. However, 

much earlier in the past, works [6, 7 ] were available in which the heat transfer of a cylinder in a viscous liquid 

was investigated for the same Re numbers as in [5 ]. Had the heat analogy been well known, the calculations of 

[5] would have probably been unnecessary, at least for a cylindrical probe. 

The aim of the present work is to compare the results [5-7 ] pertaining to various physical phenomena yet 

actually obtained in solving the same mathematical problem. 

For the cylindrical probe, the results [5 ] of calculating the dimensionless integral saturation current i, in 

which the gradient of charged particle concentration, averaged over the outline of the cylinder, was determined 

from the radius, are presented in Fig. 1 as functions of the number Ree. It is necessary that the comparison of 

these results be performed with the average Nusselt number Nu determined also from the radius. 

The values of Nu numbers obtained in [6, 7 ] are in good agreement. For comparison with the saturation 

current, it is more convenient to use [6 ] in which the calculated values of the number Nu are shown in tabulated 

form. This enables us to easily plot these values on conversion from the number Pe to the number Ree by relation 

(3). 
As the figure shows, the results of calculating the saturation current at Sc = 1.5 are very close to the results 

[6 ] at Pr -- 0.73. The number Nu as a function of Ree at Pr = 1 can be considered as an extrapolation of the results 

[5 ] obtained in the range of Sc = 0 .5-1 .5  to the number Sc = 2. All this confirms the reliability of the results of 

[5 ]. In [5 ], an equation is proposed that approximates the results of the calculations at Sc = 1: 
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i = 0.43 Re ~ (4) 

Thedependence of i on Sc at fixed Ree is weak. 

The dimensional current is related to the dimensionless one by 

I = 4:reNcoDiLi. (5) 

The applicability of Eq. (4) is limited by Ree - 15. With larger Re numbers, complicated transient and 

separation phenomena occur at the back surface of the cylinder. Calculating the saturation current under these 

conditions is possible (the problem of convective heat transfer is solved, for example, in [8 ]) yet involves difficulties. 

Therefore the proposal of [3 ] to use experimental data on the cylinder heat transfer for plasma diagnostics with 

Re > 15 seems reasonable. 

In [9 ], a unified equation is presented that relates the heat transfer from a circular cylinder in transverse 

flow of the air in the 5.10 -3 to 1.10 s Re number range (Re is determined from the radius). This equation is the 

approximation of experimental data. For the saturation current, in view of (2) and (3), we can rewrite it as 

i = 0.092 + 0.190 Re~ "s + 0.146 (Ree/0.73)  x , (6) 

where Z = 0.247 + 0.0476Re 0'168. This equation is obtained at Pr --- 0.73 which corresponds to Sc = 1.46. 

The dependence (6) is also given in Fig. 1. The values of saturation currents determined using (6) are 

found to be somewhat smaller than those proposed in [5-7 ]; howeve r, the disagreement does not exceed 10%. 

We can determine the concentration of the charged particles in the plasma by the ion saturation current of 

the cylindrical probe from relation (5); in this case, with Ree < 15, expression (4) would be appropriate for use 

for i. 

For the saturation current at the spherical probe at Sc = 1 in [5 ] 

I = 8:reNooDiRi, 

is obtained where 

0.62 
i = 1 + 0.2 Ke e 

with Ree --- 65. 
By using the heat analogy we can also perform the opposite, having obtained for the heat transfer of the 

sphere in forced convection 

Nu = 1 + 0.3 Pe ~ 

at Pr -- 0.5. 
we propose to use the equations given in the present work in the diagnostics of a laminar incompressible 

plasma. 

N O T A T I O N  

Re, Ree, gasdynamical and electrical Reynolds numbers; Pr, Prandtl number; Pe, Peclet number; Nu, 

average Nusselt number; NUD, local Nusselt number determined from the diameter; a, Debye screening distance 
to the probe radius ratio; 2D, Debye screening distance; R, probe radius; u, velocity field of a neutral gas; v, 
kinematic viscosity factor; Di, ion diffusion coefficient; n, dimensionless concentration of charged particles; r, radial 
coordinate; ], dimensionless density of the saturation current; i, dimensional integral saturation current; 1, 
dimensional saturation current; e, electron charge; No,, concentration of charged particles in the incoming flow; L, 

probe length. 
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